Обзор блока питания Galax Hall of Fame GH1300
Теги: ATX 3.0, PCIe 5.0, БП с гибридной системой охлаждения
Оглавление
- Характеристики
- Провода и разъемы
- Длина проводов до разъемов питания
- Схемотехника и охлаждение
- Измерение электрических характеристик
- Работа на максимальной мощности
- Кросс-нагрузочная характеристика
- Нагрузочная способность
- Экономичность и эффективность
- Температурный режим
- Акустическая эргономика
- Потребительские качества
- Итоги
Блоки питания особо высокой мощности (от 1000 Вт) приобретают, как правило, для специфических задач — для майнинговых ферм, для специализированных тестовых систем, для высоконагруженных компьютеров для рендеринга, расчетов, а также для разгона. Впрочем, иногда такие источники питания приобретают, просто желая создать ощутимый запас по мощности для существующей системы или в расчете на будущий апгрейд. Стоимость подобных решений может сильно отличаться, что ставит покупателя перед непростой задачей выбора модели с нужным соотношением цены и потребительских качеств. Сегодня мы рассмотрим одно из доступных на рынке решений.
Блок питания Galax Hall of Fame GH1300 попал к нам редакцию напрямую из Китая, где был приобретен. Данная модель, согласно официальным данным, имеет сертификат 80+ Platinum и укомплектована исключительно японскими конденсаторами. Система охлаждения может работать в двух режимах: в гибридном, когда вентилятор при некоторых условиях не вращается, и в обычном — с постоянно вращающимся вентилятором. Переключаются режимы двухпозиционной кнопкой на внешней панели корпуса БП (отжатое положение соответствует гибридному режиму).
Длина корпуса блока питания стандартная и составляет около 140 мм, дополнительно понадобится 15-20 мм для подвода проводов, поэтому при монтаже стоит рассчитывать на установочный размер порядка 160 мм. Для источника питания подобной мощности это очень компактный вариант, так как в большинстве случаев современные модели мощностью свыше 1000 Вт имеют длину корпуса от 160 мм. Решетка штампованная, но аэродинамическое сопротивление она имеет не очень высокое.
Поставляется блок питания в коробке с цветной полиграфией белого цвета. Коробка имеет довольно интересную конструкцию: крышка откидывает при помощи специального механизма.
Характеристики
Все необходимые параметры указаны на корпусе блока питания в полном объеме, для мощности шины +12VDC заявлено значение 1296 Вт. Соотношение мощности по шине +12VDC и полной мощности составляет 0,997, что, разумеется, является отличным показателем.
Провода и разъемы
Наименование разъема | Количество разъемов | Примечания |
---|---|---|
24 pin Main Power Connector | 1 | разборный |
4 pin 12V Power Connector | — | |
8 pin SSI Processor Connector | 2 | разборные |
6 pin PCIe 1.0 VGA Power Connector | — | |
8 pin PCIe 2.0 VGA Power Connector | 3 | на 3 шнурах |
16 pin PCIe 5.0 VGA Power Connector | 2 | на 2 шнурах |
4 pin Peripheral Connector | 4 | на одном шнуре |
15 pin Serial ATA Connector | 12 | на 3 шнурах |
4 pin Floppy Drive Connector | — |
Длина проводов до разъемов питания
Все без исключения провода являются модульными, то есть их можно снять, оставив лишь те, которые необходимы для конкретной системы.
- до основного разъема АТХ — 60 см
- до процессорного разъема 8 pin SSI — 65 см
- до процессорного разъема 8 pin SSI — 65 см
- до разъема питания видеокарты PCIe 2.0 VGA Power Connector — 60 см
- до разъема питания видеокарты PCIe 2.0 VGA Power Connector — 60 см
- до разъема питания видеокарты PCIe 2.0 VGA Power Connector — 60 см
- до разъема питания видеокарты PCIe 5.0 VGA Power Connector — 72 см
- до разъема питания видеокарты PCIe 5.0 VGA Power Connector — 72 см
- до первого разъема SATA Power Connector — 45 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
- до первого разъема SATA Power Connector — 45 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
- до первого разъема SATA Power Connector — 45 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
- до разъема Peripheral Connector («молекс») — 45 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
Длина проводов средняя, она является достаточной для комфортного использования в корпусах типоразмера full tower и более габаритных с верхним расположением блока питания. В корпусах высотой до 55 см с нижнерасположенным блоком питания длина проводов также должна быть достаточной: до разъемов питания процессора — по 65 см. Таким образом, с большинством современных корпусов проблем быть не должно. Правда, с учетом конструкции современных корпусов, имеющих развитые системы скрытой прокладки проводов, один из шнуров вполне можно было бы сделать и более длинным: скажем, 75-80 см, чтобы обеспечить максимальное удобство работы при сборке системы.
Распределение разъемов SATA Power по шнурам питания довольно удачное, позволяющее полноценно обеспечить питанием комплектующие в нескольких зонах даже при большом количестве установленных устройств. Тем более маловероятны сложности в случае типовой системы. Все разъемы SATA Power прямые, использование таких разъемов наиболее удобно в случае накопителей, размещаемых с тыльной стороны основания для системной платы.
Покрытие проводов выполнено из ткани, скорее всего это нейлон. Насколько быстро на таком покрытии будет собираться пыль, мы без длительных экспериментов сказать не можем, но скорее всего пыль собираться будет, и довольно активно.
Сами провода мягкие и хорошо изгибаются, что косвенно свидетельствует о высоком содержании меди.
Схемотехника и охлаждение
Блок питания оснащен активным корректором коэффициента мощности и имеет довольно широкий диапазон питающих напряжений от 100 до 240 вольт. Это обеспечивает устойчивость к понижению напряжения в электросети ниже нормативных значений.
Конструкция блока питания вполне соответствует современным тенденциям: активный корректор коэффициента мощности, синхронный выпрямитель для канала +12VDC, независимые импульсные преобразователи постоянного тока для линий +3.3VDC и +5VDC.
Полупроводниковые элементы высоковольтных цепей размещены на двух радиаторах, входной выпрямитель расположен на отдельном теплоотводе. Элементы синхронного выпрямителя установлены с оборотной стороны основной печатной платы, с лицевой стороны платы над ними имеется теплоотвод.
Независимые источники +3.3VDC и 5VDC установлены на дочерней печатной плате и, по традиции, дополнительных теплоотводов не имеют — это вполне типично для блоков питания с активным охлаждением.
В низковольтных цепях установлены конденсаторы только с полимерным электролитом.
Конденсаторы на входе имеют японское происхождение (Nippon Chemi-Con).
В блоке питания установлен вентилятор D12SH-12, основанный на самом простом подшипнике скольжения, он изготовлен компанией Yate Loon Electronics. Подключение вентилятора — разъемное, двухпроводное. Из достоинств подобного решения — возможность простой замены вентилятора на аналоги, а из недостатков — не очень долгий срок службы (около 3 лет при постоянной эксплуатации).
Измерение электрических характеристик
Далее мы переходим к инструментальному исследованию электрических характеристик источника питания при помощи многофункционального стенда и другого оборудования.
Величина отклонения выходных напряжений от номинала кодируется цветом следующим образом:
Цвет | Диапазон отклонения | Качественная оценка |
---|---|---|
более 5% | неудовлетворительно | |
+5% | плохо | |
+4% | удовлетворительно | |
+3% | хорошо | |
+2% | очень хорошо | |
1% и менее | отлично | |
−2% | очень хорошо | |
−3% | хорошо | |
−4% | удовлетворительно | |
−5% | плохо | |
более 5% | неудовлетворительно |
Работа на максимальной мощности
Первым этапом испытаний является эксплуатация блока питания на максимальной мощности продолжительное время. Такой тест с уверенностью позволяет удостовериться в работоспособности БП.
Кросс-нагрузочная характеристика
Следующим этапом инструментального тестирования является построение кросснагрузочной характеристики (КНХ) и представление ее на четвертьплоскости, ограниченной максимальной мощностью по шине 3,3&5 В с одной стороны (по оси ординат) и максимальной мощностью по шине 12 В с другой (по оси абсцисс). В каждой точке измеренное значение напряжения обозначается цветовым маркером в зависимости от отклонения от номинального значения.
КНХ позволяет нам определить, какой уровень нагрузки можно считать допустимым, особенно по каналу +12VDC, для тестируемого экземпляра. В данном случае отклонения действующих значений напряжения от номинала по каналу +12VDC не превышают 1% во всем диапазоне мощности, что является отличным результатом. При типичном распределении мощности по каналам отклонения от номинала не превышают 1% по каналу +3.3VDC, 2% по каналу +5VDC и 1% по каналу +12VDC.
Данная модель БП хорошо подходит для мощных современных систем из-за высокой практической нагрузочной способности канала +12VDC.
Нагрузочная способность
Следующий тест призван определить максимальную мощность, которую можно подать через соответствующие разъемы при нормированном отклонении значения напряжения в размере 3 или 5 процентов от номинала.
В случае видеокарты с единственным разъемом питания максимальная мощность по каналу +12VDC составляет не менее 150 Вт при отклонении в пределах 3%.
В случае видеокарты с двумя разъемами питания при использовании двух шнуров питания максимальная мощность по каналу +12VDC составляет не менее 350 Вт при отклонении в пределах 3%, что позволяет использовать очень мощные видеокарты.
Также мы провели тестирование на нестандартном значении мощности нагрузки 525 Вт с использованием всех трех имеющихся разъемов.
Никаких заметных отклонений выявлено не было, поэтому мы провели тестирование и при нагрузке 650 Вт.
И тут всё прошло без нареканий. Таким образом, при нагрузке через три разъема PCIe 2.0 максимальная мощность по каналу +12VDC составляет не менее 650 Вт при отклонении в пределах 3%.
При нагрузке через разъем питания процессора максимальная мощность по каналу +12VDC составляет не менее 250 Вт при отклонении в пределах 3%. Этого вполне достаточно для типовых систем, у которых на системной плате есть только один разъем для питания процессора.
При нагрузке через два разъема питания процессора максимальная мощность по каналу +12VDC составляет чуть менее 500 Вт при отклонении в пределах 3%.
В случае системной платы максимальная мощность по каналу +12VDC составляет свыше 150 Вт при отклонении 3%. Так как сама плата потребляет по данному каналу в пределах 10 Вт, высокая мощность может потребоваться для питания карт расширения — например, для видеокарт без дополнительного разъема питания, которые обычно имеют потребление в пределах 75 Вт.
Экономичность и эффективность
При оценке эффективности компьютерного блока питания можно идти двумя путями. Первый путь заключается в оценке компьютерного блока питания как отдельного преобразователя электрической энергии с дальнейшей попыткой минимизировать сопротивление линии передачи электрической энергии от БП к нагрузке (где и измеряется ток и напряжение на выходе БП). Для этого блок питания обычно подключается всеми имеющимися разъемами, что ставит разные блоки питания в неравные условия, так как набор разъемов и количество токоведущих проводов зачастую разное даже у блоков питания одинаковой мощности. Таким образом, хотя результаты получаются корректными для каждого конкретного источника питания, в реальных условиях полученные данные малоприменимы, поскольку в реальных условиях блок питания подключается ограниченным количеством разъемов, а не всеми сразу. Поэтому логичным представляется вариант определения эффективности (экономичности) компьютерного блока питания не только на фиксированных значениях мощности, включая распределение мощности по каналам, но и с фиксированным набором разъемов для каждого значения мощности.
Представление эффективности компьютерного блока питания в виде значения КПД (коэффициента полезного действия) имеет свои традиции. Прежде всего, КПД — это коэффициент, определяемый соотношением мощностей на выходе и на входе блока питания, то есть КПД показывает эффективность преобразования электрической энергии. Обычному же пользователю данный параметр почти ничего не скажет, за исключением того, что более высокий КПД вроде как говорит о большей экономичности БП и более высоком его качестве. Зато КПД стал отличным маркетинговым якорем, особенно в комбинацией с сертификатом 80Plus. Однако с практической точки зрения КПД не оказывает заметного влияния на функционирование системного блока: он не увеличивает производительность, не снижает шум или температуру внутри системного блока. Это просто технический параметр, уровень которого в основном определяется развитием промышленности в текущий момент времени и себестоимостью продукта. Для пользователя же максимизация КПД выливается в увеличение розничной цены.
С другой стороны, иногда нужно объективно оценить экономичность компьютерного блока питания. Под экономичностью мы подразумеваем потерю мощности при преобразовании электроэнергии и ее передаче к конечным потребителям. И для оценки этого КПД не нужен, так как можно использовать не отношение двух величин, а абсолютные значения: рассеиваемую мощность (разницу между значениями на входе и выходе блока питания), а также потребление энергии источником питания за определенное время (день, месяц, год и т. д.) при работе с постоянной нагрузкой (мощностью). Это позволяет легко увидеть реальную разницу в потреблении электроэнергии конкретными моделями БП и при необходимости рассчитать экономическую выгоду от использования более дорогих источников питания.
Таким образом, на выходе мы получаем понятный для всех параметр — рассеиваемую мощность, которая легко преобразуется в киловатт-часы (кВт·ч), которые и регистрирует счетчик электрической энергии. Умножив полученное значение на стоимость киловатт-часа, получим стоимость электрической энергии при условии эксплуатации системного блока круглосуточно в течение года. Подобный вариант, конечно, чисто гипотетический, но он позволяет оценить разницу между стоимостью эксплуатации компьютера с различными источниками питания в течение длительного периода времени и сделать выводы об экономической целесообразности приобретения конкретной модели БП. В реальных условиях высчитанное значение может достигаться за более долгий период — например, от 3 лет и более. При необходимости каждый желающий может разделить полученное значение на нужный коэффициент в зависимости от количества часов в сутках, в течение которых системный блок эксплуатируется в указанном режиме, чтобы получить расход электроэнергии за год.
Мы решили выделить несколько типовых вариантов по мощности и соотнести их с количеством разъемов, которое соответствует данным вариантам, то есть максимально приблизить методику измерения экономичности к условиям, которые достигаются в реальном системном блоке. Вместе с тем, это позволит оценивать экономичность разных блоков питания в полностью одинаковых условиях.
Нагрузка через разъемы | 12VDC, Вт | 5VDC, Вт | 3.3VDC, Вт | Общая мощность, Вт |
---|---|---|---|---|
основной ATX, процессорный (12 В), SATA | 5 | 5 | 5 | 15 |
основной ATX, процессорный (12 В), SATA | 80 | 15 | 5 | 100 |
основной ATX, процессорный (12 В), SATA | 180 | 15 | 5 | 200 |
основной ATX, процессорный (12 В), 6-контактный PCIe, SATA | 380 | 15 | 5 | 400 |
основной ATX, процессорный (12 В), 6-контактные PCIe (1 шнур с 2 разъемами), SATA | 480 | 15 | 5 | 500 |
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 1 разъему), SATA | 480 | 15 | 5 | 500 |
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 2 разъема), SATA | 730 | 15 | 5 | 750 |
Полученные результаты выглядят следующим образом:
Рассеиваемая мощность, Вт | 15 Вт | 100 Вт | 200 Вт | 400 Вт | 500 Вт (1 шнур) |
500 Вт (2 шнура) |
750 Вт |
---|---|---|---|---|---|---|---|
Cooler Master MWE Bronze 750W V2 | 15,9 | 22,7 | 25,9 | 43,0 | 58,5 | 56,2 | 102,0 |
Cougar BXM 700 | 12,0 | 18,2 | 26,0 | 42,8 | 57,4 | 57,1 | |
Cooler Master Elite 600 V4 | 11,4 | 17,8 | 30,1 | 65,7 | 93,0 | ||
Cougar GEX 850 | 11,8 | 14,5 | 20,6 | 32,6 | 41,0 | 40,5 | 72,5 |
Cooler Master V1000 Platinum (2020) | 19,8 | 21,0 | 25,5 | 38,0 | 43,5 | 41,0 | 55,3 |
Cooler Master V650 SFX | 7,8 | 13,8 | 19,6 | 33,0 | 42,4 | 41,4 | |
Chieftec BDF-650C | 13,0 | 19,0 | 27,6 | 35,5 | 69,8 | 67,3 | |
XPG Core Reactor 750 | 8,0 | 14,3 | 18,5 | 30,7 | 41,8 | 40,4 | 72,5 |
Deepcool DQ650-M-V2L | 11,0 | 13,8 | 19,5 | 34,7 | 44,0 | ||
Deepcool DA600-M | 13,6 | 19,8 | 30,0 | 61,3 | 86,0 | ||
Fractal Design Ion Gold 850 | 14,9 | 17,5 | 21,5 | 37,2 | 47,4 | 45,2 | 80,2 |
XPG Pylon 750 | 11,1 | 15,4 | 21,7 | 41,0 | 57,0 | 56,7 | 111,0 |
Thermaltake TF1 1550 | 13,8 | 15,1 | 17,0 | 24,2 | 30,0 | 42,0 | |
Chieftronic PowerUp GPX-850FC | 12,8 | 15,9 | 21,4 | 33,2 | 39,4 | 38,2 | 69,3 |
Thermaltake GF1 1000 | 15,2 | 18,1 | 21,5 | 31,5 | 38,0 | 37,3 | 65,0 |
MSI MPG A750GF | 11,5 | 15,7 | 21,0 | 30,6 | 39,2 | 38,0 | 69,0 |
Chieftronic PowerPlay GPU-850FC | 12,0 | 15,9 | 19,7 | 28,1 | 34,0 | 33,3 | 56,0 |
Cooler Master MWE Gold 750W V2 | 12,2 | 16,0 | 21,0 | 34,6 | 42,0 | 41,6 | 76,4 |
XPG Pylon 450 | 12,6 | 18,5 | 28,4 | 63,0 | |||
Chieftronic PowerUp GPX-550FC | 12,2 | 15,4 | 21,6 | 35,7 | 47,1 | ||
Chieftec BBS-500S | 13,3 | 16,3 | 22,2 | 38,6 | |||
Cougar VTE X2 600 | 13,3 | 18,3 | 28,0 | 49,3 | 64,2 | ||
Thermaltake GX1 500 | 12,8 | 14,1 | 19,5 | 34,8 | 47,6 | ||
Thermaltake BM2 450 | 12,2 | 16,7 | 26,3 | 57,9 | |||
Chieftec PPS-1050FC | 10,8 | 13,0 | 17,4 | 29,1 | 35,1 | 34,6 | 58,0 |
Super Flower SF-750P14XE | 14,0 | 16,5 | 23,0 | 35,0 | 42,0 | 44,0 | 76,0 |
XPG Core Reactor 850 | 9,8 | 14,9 | 18,1 | 29,0 | 38,4 | 37,0 | 63,0 |
Asus TUF Gaming 750B | 11,1 | 13,8 | 20,7 | 38,6 | 50,7 | 49,3 | 93,0 |
Deepcool PQ1000M | 10,4 | 12,6 | 16,7 | 28,1 | 34,4 | ||
Chieftronic BDK-650FC | 12,6 | 14,3 | 20,4 | 41,1 | 53,5 | 50,6 | |
Cooler Master XG Plus 750 Platinum | 13,8 | 14,2 | 18,9 | 36,5 | 43,0 | 40,0 | 61,1 |
Chieftec GPC-700S | 15,6 | 21,4 | 30,9 | 63,5 | 84,0 | ||
Gigabyte UD1000GM PG5 | 11,0 | 14,4 | 19,9 | 31,4 | 40,1 | 37,8 | 66,6 |
Zalman ZM700-TXIIv2 | 12,5 | 19,5 | 30,8 | 62,0 | 83,0 | 80,0 | |
Cooler Master V850 Platinum | 17,8 | 20,1 | 24,6 | 34,5 | 38,3 | 37,8 | 58,5 |
Thermaltake PF1 1200 Platinum | 12,8 | 18,3 | 24,0 | 35,0 | 43,0 | 39,5 | 67,2 |
XPG CyberCore 1000 Platinum | 10,1 | 19,6 | 21,6 | 33,9 | 37,4 | 36,7 | 57,7 |
Chieftec CSN-650C | 10,7 | 12,5 | 17,5 | 32,0 | 43,5 | ||
Asus ROG Loki SFX-L 1000W Platinum | 13,7 | 14,5 | 17,6 | 24,9 | 38,7 | ||
Thermaltake GF3 1000 | 8,8 | 17 | 21,7 | 35,5 | 44,8 | 41,6 | 70,5 |
Chieftronic PowerPlay GPU-1200FC | 13,8 | 17,9 | 22,2 | 31,6 | 36 | 33,2 | 55,5 |
Galax Hall of Fame GH1300 | 12,7 | 14,2 | 18,2 | 24,7 | 29,9 |
Данная модель имеет достаточно высокую экономичность во всех протестированных режимах, это вполне типичный представитель источников питания с уровнем сертификата 80Plus Platinum.
Вт | |
---|---|
Deepcool PQ1000M | 68 |
Galax Hall of Fame GH1300 | 70 |
Thermaltake TF1 1550 | 70 |
Chieftec PPS-1050FC | 70 |
Asus ROG Loki SFX-L 1000W Platinum | 71 |
XPG Core Reactor 750 | 72 |
XPG Core Reactor 850 | 72 |
Chieftec CSN-650C | 73 |
Cooler Master V650 SFX | 74 |
Chieftronic PowerPlay GPU-850FC | 76 |
Gigabyte UD1000GM PG5 | 77 |
MSI MPG A750GF | 79 |
Deepcool DQ650-M-V2L | 79 |
Cougar GEX 850 | 80 |
Thermaltake GX1 500 | 81 |
Thermaltake GF3 1000 | 83 |
Chieftronic PowerUp GPX-850FC | 83 |
Cooler Master XG Plus 750 Platinum | 83 |
Cooler Master MWE Gold 750W V2 | 84 |
Asus TUF Gaming 750B | 84 |
Chieftronic PowerUp GPX-550FC | 85 |
XPG CyberCore 1000 Platinum | 85 |
Chieftronic PowerPlay GPU-1200FC | 86 |
Thermaltake GF1 1000 | 86 |
Chieftronic BDK-650FC | 88 |
Super Flower SF-750P14XE | 89 |
XPG Pylon 750 | 89 |
Thermaltake PF1 1200 Platinum | 90 |
Chieftec BBS-500S | 90 |
Fractal Design Ion Gold 850 | 91 |
Chieftec BDF-650C | 95 |
Cooler Master V850 Platinum | 97 |
Cougar BXM 700 | 99 |
Cooler Master V1000 Platinum (2020) | 104 |
Cooler Master MWE 700 Bronze V2 | 108 |
Cougar VTE X2 600 | 109 |
Thermaltake BM2 450 | 113 |
XPG Pylon 450 | 123 |
Deepcool DA600-M | 125 |
Zalman ZM700-TXIIv2 | 125 |
Cooler Master Elite 600 V4 | 125 |
Chieftec GPC-700S | 131 |
По суммарной экономичности на низкой и средней мощности данная модель заняла второе место в нашем списке протестированных за последние годы БП.
Потребление энергии компьютером за год, кВт·ч | 15 Вт | 100 Вт | 200 Вт | 400 Вт | 500 Вт (1 шнур) |
500 Вт (2 шнура) |
750 Вт |
---|---|---|---|---|---|---|---|
Cooler Master MWE Bronze 750W V2 | 271 | 1075 | 1979 | 3881 | 4893 | 4872 | 7464 |
Cougar BXM 700 | 237 | 1035 | 1980 | 3879 | 4883 | 4880 | |
Cooler Master Elite 600 V4 | 231 | 1032 | 2016 | 4080 | 5195 | ||
Cougar GEX 850 | 235 | 1003 | 1933 | 3790 | 4739 | 4735 | 7205 |
Cooler Master V1000 Platinum (2020) | 305 | 1060 | 1975 | 3837 | 4761 | 4739 | 7054 |
Cooler Master V650 SFX | 200 | 997 | 1924 | 3793 | 4751 | 4743 | |
Chieftec BDF-650C | 245 | 1042 | 1994 | 3815 | 4991 | 4970 | |
XPG Core Reactor 750 | 202 | 1001 | 1914 | 3773 | 4746 | 4734 | 7205 |
Deepcool DQ650-M-V2L | 228 | 997 | 1923 | 3808 | 4765 | ||
Deepcool DA600-M | 251 | 1049 | 2015 | 4041 | 5133 | ||
Fractal Design Ion Gold 850 | 262 | 1029 | 1940 | 3830 | 4795 | 4776 | 7273 |
XPG Pylon 750 | 229 | 1011 | 1942 | 3863 | 4879 | 4877 | 7542 |
Thermaltake TF1 1550 | 252 | 1008 | 1901 | 3716 | 4643 | 6938 | |
Chieftronic PowerUp GPX-850FC | 244 | 1015 | 1940 | 3795 | 4725 | 4715 | 7177 |
Thermaltake GF1 1000 | 265 | 1035 | 1940 | 3780 | 4713 | 4707 | 7139 |
MSI MPG A750GF | 232 | 1014 | 1936 | 3772 | 4723 | 4713 | 7174 |
Chieftronic PowerPlay GPU-850FC | 237 | 1015 | 1925 | 3750 | 4678 | 4672 | 7061 |
Cooler Master MWE Gold 750W V2 | 238 | 1016 | 1936 | 3807 | 4748 | 4744 | 7239 |
XPG Pylon 450 | 242 | 1038 | 2001 | 4056 | |||
Chieftronic PowerUp GPX-550FC | 238 | 1011 | 1941 | 3817 | 4793 | ||
Chieftec BBS-500S | 248 | 1019 | 1947 | 3842 | |||
Cougar VTE X2 600 | 248 | 1036 | 1997 | 3936 | 4942 | ||
Thermaltake GX1 500 | 244 | 1000 | 1923 | 3809 | 4797 | ||
Thermaltake BM2 450 | 238 | 1022 | 1982 | 4011 | |||
Chieftec PPS-1050FC | 226 | 990 | 1904 | 3759 | 4688 | 4683 | 7078 |
Super Flower SF-750P14XE | 254 | 1021 | 1954 | 3811 | 4748 | 4765 | 7236 |
XPG Core Reactor 850 | 217 | 1007 | 1911 | 3758 | 4716 | 4704 | 7122 |
Asus TUF Gaming 750B | 229 | 997 | 1933 | 3842 | 4824 | 4812 | 7385 |
Deepcool PQ1000M | 223 | 986 | 1898 | 3750 | 4681 | ||
Chieftronic BDK-650FC | 242 | 1001 | 1931 | 3864 | 4849 | 4823 | |
Cooler Master XG Plus 750 Platinum | 252 | 1000 | 1918 | 3824 | 4757 | 4730 | 7105 |
Chieftec GPC-700S | 268 | 1064 | 2023 | 4060 | 5116 | ||
Gigabyte UD1000GM PG5 | 228 | 1002 | 1926 | 3779 | 4731 | 4711 | 7153 |
Zalman ZM700-TXIIv2 | 241 | 1047 | 2022 | 4047 | 5107 | 5081 | |
Cooler Master V850 Platinum | 287 | 1052 | 1968 | 3806 | 4716 | 4711 | 7083 |
Thermaltake PF1 1200 Platinum | 244 | 1036 | 1962 | 3811 | 4757 | 4726 | 7159 |
XPG CyberCore 1000 Platinum | 220 | 1048 | 1941 | 3801 | 4708 | 4702 | 7076 |
Chieftec CSN-650C | 225 | 986 | 1905 | 3784 | 4761 | ||
Asus ROG Loki SFX-L 1000W Platinum | 251 | 1003 | 1906 | 3722 | 4719 | ||
Thermaltake GF3 1000 | 209 | 1025 | 1942 | 3815 | 4772 | 4744 | 7188 |
Chieftronic PowerPlay GPU-1200FC | 252 | 1033 | 1947 | 3781 | 4695 | 4671 | 7056 |
Galax Hall of Fame GH1300 | 243 | 1000 | 1911 | 3720 | 4642 |
В данном случае мы также приводим и измерения традиционного КПД. Результаты регистрировались при постоянной нагрузке на каналы +3.3VDC (5 Вт) и +5VDC (15 Вт) и изменяемой мощности по каналу +12VDC.
Всего таким образом мы измерили параметры блока питания в 11 точках. В результате максимальный КПД в нашем случае составил 94,9% при выходной мощности 400 Вт. Максимальная рассеиваемая мощность составила 100 Вт при выходной мощности 1300 Вт, что совсем немного для блока питания подобной мощности.
Температурный режим
Все основные тесты проводились в режиме с постоянно вращающимся вентилятором, но отдельно мы исследовали функционирование в гибридном режиме. Термонагруженность конденсаторов при работе на мощности вплоть до максимальной находится на невысоком уровне.
При использовании гибридного режима вентилятор в блоке питания включается только при достижении пороговой температуры (около 45 градусов). Отключение вентилятора также происходит только при снижении температуры ниже порогового значения (около 38 градусов), что приводит к периодическим циклам включения-выключения вентилятора в диапазоне мощности от 200 до 500 Вт.
Скачкообразного роста уровня шума при запуске вентилятора отмечено не было. Долговременно в безвентиляторном режиме блок питания способен работать при мощности нагрузки 100 Вт и менее. Также стоит учитывать, что в случае работы с остановленным вентилятором температура компонентов внутри БП сильно зависит от температуры окружающего воздуха.
В целом гибридный режим реализован не слишком удачно, так как длительное время вентилятор не вращается только при низкой нагрузке — по сути, только в простое.
Акустическая эргономика
При подготовке данного материала мы использовали следующую методику измерения уровня шума блоков питания. Блок питания располагается на ровной поверхности вентилятором вверх, над ним на расстоянии 0,35 метра размещается измерительный микрофон шумомера Октава 110А-Эко, которым и производится измерение уровня шума. Нагрузка блока питания осуществляется при помощи специального стенда, имеющего бесшумный режим работы. В ходе измерения уровня шума осуществляется эксплуатация блока питания на постоянной мощности в течение 20 минут, после чего производится замер уровня шума.
Подобное расстояние до объекта измерения является наиболее приближенным для настольного размещения системного блока с установленным блоком питания. Данный метод позволяет оценить уровень шума блока питания в жестких условиях с точки зрения небольшого расстояния от источника шума до пользователя. При увеличении расстояния до источника шума и появлении дополнительных преград, имеющих хорошую звукоотражающую способность, уровень шума в контрольной точке также будет снижаться, что приведет к улучшению акустической эргономики в целом.
Данная модель имеет гибридную систему охлаждения, что означает возможность функционирования БП не только при активном, но и при пассивном охлаждении. Управление запуском вентилятора на практике производится в зависимости от достижения пороговой температуры. При работе в гибридном режиме на мощности до 100 Вт включительно работу блока питания можно считать условно бесшумной, так как вентилятор в обычных условиях не вращается в течение продолжительного времени.
При работе с постоянно вращающимся вентилятором в диапазоне мощности до 500 Вт включительно шум блока питания находится на среднем уровне для жилого помещения в дневное время суток.
При дальнейшем увеличении выходной мощности уровень шума заметно повышается. При работе на мощности 750 Вт уровень шума данной модели уже превышает 40 дБА, его можно оценить как высокий для жилого помещения в дневное время суток.
При работе на мощности 1200 Вт шум очень высокий не только для жилого, но и для офисного помещения — более 50 дБА.
Таким образом, с точки зрения акустической эргономики данная модель обеспечивает комфорт при выходной мощности в пределах 500 Вт.
Также мы оцениваем уровень шума электроники блока питания, поскольку в некоторых случаях она является источником нежелательных призвуков. Данный этап тестирования осуществляется путем определения разницы между уровнем шума в нашей лаборатории с включенным блоком питания и с выключенным. В случае, если полученное значение находится в пределах 5 дБА, никаких отклонений в акустических свойствах БП нет. При разнице более 10 дБА, как правило, есть определенные дефекты, которые можно услышать с расстояния около полуметра. На данном этапе измерений микрофон шумомера располагается на расстоянии около 40 мм от верхней плоскости БП, так как на бо́льших расстояниях измерение шума электроники весьма затруднительно. Измерение производится в двух режимах: дежурном режиме (STB, или Stand by) и при работающем на нагрузку БП, но с принудительно остановленным вентилятором.
В режиме ожидания шум электроники почти полностью отсутствует. В целом шум электроники можно считать относительно низким: превышение фонового шума составило не более 2 дБА.
Потребительские качества
Нагрузочная способность канала +12VDC высокая, что позволяет использовать данный БП в мощных системах с несколькими видеокартами, в том числе с самыми современными топовыми (благо БП имеет специальные разъемы питания, не требующие переходников). Акустическая эргономика, мягко говоря, не выдающаяся, но при нагрузке в пределах 500 Вт шум умеренный. Этот источник питания может длительное время работать с остановленным вентилятором на мощности 100 Вт. Длина проводов достаточная для большинства современных корпусов, расположение разъемов на шнурах и их количество можно считать вполне удачными.
На мощности 750 Вт шум становится заметным и неприятным, но в реальных условиях компоненты, имеющие подобное потребление, сами по себе будут производить значительный шум. Длина проводов у БП достаточная для большинства современных корпусов, к тому же провода использованы мягкие и полностью съемные, что повышает удобство при сборке и дальнейшей эксплуатации.
Итоги
Технико-эксплуатационные характеристики Galax Hall of Fame GH1300 находятся на хорошем уровне, чему способствуют высокая нагрузочная способность канала +12VDC, высокая экономичность, невысокая термонагруженность. Правда, использован вентилятор на обычном подшипнике скольжения, что с высокой долей вероятности приведет к необходимости замены вентилятора через несколько лет. Блок питания позволяет включить гибридный режим охлаждения, на малой мощности он может длительно работать с остановленным вентилятором. Также отметим возможность подключения сразу двух видеокарт посредством разъемов питания PCIe 5.0.
В итоге получился источник питания преимущественно для мощной игровой системы с одной или двумя топовыми видеокартами, владельца которой не очень волнует уровень шума при работе. Впрочем, возможность использовать данную модель БП в мощных рабочих системах также никто не отменял.
5 мая 2023 Г.
Источник: ixbt.com